139

Biosynthesis of Vitamin B₁₂: Structure of the Ester of a New Biosynthetic Intermediate, Precorrin-6y

Denis Thibaut, ^a Fumiyuki Kiuchi, ^b Laurent Debussche, ^a Finian J. Leeper, ^b Francis Blanche^{* a} and Alan R. Battersby^{* b}

^a Departement Analyse, Centre de Recherche de Vitry-Alfortville, Rhône-Poulenc Rorer, BP14, F-94403 Vitry-sur-Seine Cedex, France ^b University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK

¹³C Labelling and NMR experiments establish the structure of precorrin-6y octamethyl ester, the corresponding octa-acid being a further new intermediate on the biosynthetic pathway to hydrogenobyrinic acid **1**.

The enzymic formation of hydrogenobyrinic acid 1 from precorrin- $6x^{1.2}$ 2a, a new intermediate which was highly informative about the biosynthetic pathway to 1, first involves a reduction step specifically dependent¹ on NADPH (reduced nicotinamide adenine dinucleotide). Hydrogenobyrinic acid 1 is the cobalt-free form of cobyrinic acid, a direct biosynthetic precursor of vitamin B₁₂. Labelling experiments have demonstrated³ that the hydride equivalent transferred from NADPH is delivered to C-19 of precorrin-6x. The product of this reduction is the next intermediate⁴ on the biosynthetic pathway to 1 and it is named precorrin- $6y^+$ since it directly follows precorrin-6x 2a. Precorrin-6y has been isolated and shown to be converted in 90% yield⁴ into 1 by the complete cell-free enzyme system from *Pseudomonas dentrificans*¹ in the presence of *S*-adenosylmethionine (SAM).

The structure of precorrin-6x octamethyl ester has been rigorously established^{1,2,5} to be **2b** so the actual biosynthetic intermediate, precorrin-6x octa-acid, is **2a** or possibly a double-bond tautomer² of that structure. Since in the reduction process the hydride equivalent is transferred to C-19 of precorrin-6x **2a**, structure **3a** can be considered for precorrin-6y provided only reduction and no rearrangements have occurred. We now describe ¹³C labelling and NMR experiments which fully support structure **3b** for precorrin-6y octamethyl ester.

It had already been shown⁴ that the very pale yellow precorrin-6y has a UV–VIS spectrum very similar to that of precorrin-6x **2a** but with the peaks shifted *ca*. 20 nm to shorter wavelength. Thus precorrin-6y has separated chromophores (*cf.* **2a**) and its molecular weight by FAB-MS (fast atom bombardment mass spectrometry) was 896 whilst the corresponding methyl ester showed m/z 1008.⁴ Both values are 2 units higher than found¹ for precorrin-6x **2a** and its ester **2b**, respectively, thus indicating that only a single reduction step has occurred. Further, the mass change from precorrin-6y to

^{\dagger} The letter y will eventually be replaced by a capital letter *e.g.* C or D, when it is known whether 2 or 3 intermediates, also at the hexamethylated level, precede precorrin-6y on the pathway.

2d $R = H, \blacklozenge = {}^{12}C, \blacklozenge = O = {}^{13}C$

its ester showed that eight carboxy groups are still present. This intermediate, like precorrin-6x, is thus a member of the precorrin-6 family.⁶ The esterified precorrin-6y proved to be a mixture of two separable isomers (major, *ca.* 3 parts, m/z 1008.4941; minor, *ca.* 2 parts m/z 1008.4931; $C_{52}H_{72}N_4O_{16}$ requires 1008.4943) shown below to be epimeric at C-3.

The structural work started with the enzymic production as previously^{1,2} of ¹³C labelled precorrin-6x **2c** from 5-amino- $[4-^{13}C]$ laevulinic acid. This was incubated with a cell-free extract from the engineered strain⁴ SC510 Rif^r (pXL253) to afford labelled precorrin-6y which was isolated as the methyl ester. A second preparation of precorrin-6y was carried out from 5-amino[5-¹³C] laevulinic acid *via* precorrin-6x **2d** and differing from the previous one in the use of [*methyl*-¹³C]SAM in the early stages^{1,2} so that the *C*-methyl groups at C-2 and C-7 were ¹³C labelled. In both preparations, the two epimeric esters were separated.

The four labelled esters above were examined by ${}^{13}C$ NMR and by ${}^{1}H{-}{}^{13}C$ correlation experiments with the delay set to the optimum for couplings of 10 Hz to reveal long-range ${}^{13}C{-}^{1}H$ couplings through up to three bonds. Table 1 collects the ${}^{13}C$ chemical shifts and couplings and the arrows on structures **4a** and **4b** show the long-range ${}^{13}C{-}^{1}H$ couplings detected in the two samples of 3-*epi*-precorrin-6y ester which were used for the main COSY experiments because more material was available. It should be emphasised that the various ${}^{13}C$ labels arrive unambiguously at the illustrated sites as a result of the early steps of building the tetrapyrrolic macrocycle which are firmly established.⁷

It is not intended in this brief account to set every piece of the data into place; rather the simplest main line of the structural argument for 3-*epi*-precorrin-6y ester (**4a**,**b**) will be given. Every other observation collected in Table 1 and illustrated on structures **4a** and **4b** reinforces that argument by being fully self-consistent.

(i) C-15, C-1 and C-19 can be directly assigned since C-15 in 4b is the only centre coupled to two other carbons and C-1 and C-19 in 4a are the two directly coupled carbons; (ii) this allows assignment of the 1-Me, 19-H and 15-H; (iii) there is a connection from 15-H to C-16 and on to 17-Me in 4b and finally between the 17-Me and C-17 in 4a; (iv) C-14 is located by being the remaining carbon coupled to C-15; (v) 15-H in 4a is coupled to C-13 and this to 12-CH₂ which is coupled to a carbon giving a signal at δ 69.6. Though the latter was not resolved from the C-1 signal in the 2D-spectrum, C-1 cannot be coupled to the 12-CH₂ so the coupling partner must be C-11; (vi) C-1 or C-11 is coupled to a CH₂ group in 4a whose carbon was labelled in 4b and only C-5 and C-10 remain as candidates for this group. Neither C-1 nor C-11 is close enough to C-5 so C-11 must be coupling to 10-H which locates this CH₂ group at C-10. Interlocking evidence comes from the coupling of the carbon on this CH₂ group in 4b to a methyl;

C-5 is not close enough to any methyl and so the CH_2 group must be C-10 which is coupled to 11-Me. Pinpointing the C-10 methylene immediately allows assignment of C-10, C-9 and C-8 from the couplings shown on **4a** and **4b**. C-8 in **4a** connects to 7-Me and this allows assignment of C-6; (*vii*) the remaining

Table 1 ¹³C NMR data for precorrin-6y octamethyl ester 3c,d and its C-3 epimer 4a,b

3c			3d			4a			4b		
δ _C	Coupling, J/Hz	Assignment	δ _C	Coupling, J/Hz	Assignment	δ _C	Coupling, J/Hz	Assignment	$\delta_{\rm C}$	Coupling, J/Hz	Assignment
53.3	s	C-3	17.6	s	2-Me	54.6	s	C-3	20.4	s	2-Me
56.0	s	C-17	23.5	S	7-Me	56.0	s	C-17	23.1	s	7-Me
70.0	s	C-11	35.7	d, 50.8	C-10	69.6	s	C-11	35.6	d, 50.4	C-10
71.6	d, 40.5	C-1	76.0	dd, 66.4, 71.7	C-15	69.9	d, 41.8	C-1	76.2	dd, 66.2, 72.0	C-15
72.8	d, 39.5	C-19	80.8	dd, 6.5, 70.1	C-5	72.4	d, 41.0	C-19	78.1	dd, 5.6, 71.7	C-5
129.6	s	C-8	146.9	dd, 6.0, 50.0	C-9	130.5	s	C-8	147.3	dd, 5.6, 50.5	C-9
135.8	s	C-13	160.0	d, 72.3	C-14	135.8	s	C-13	159.3	d, 72.3	C-14
181.8	s	C-6	160.8	d, 70.0	C-4	182.4	s	C-6	159.6	d, 71.4	C-4
			176.5	d, 66.4	C-16				176.9	d, 66.1	C-16

meso-H must be 5-H from which C-5 and C-4 can be assigned using **4b**; (*viii*) a proton coupled to either C-4 or C-14 in **4b** is also directly attached to 13 C in **4a** so this proton must be 3-H and hence C-3 and 2-Me can be assigned; (*ix*) the couplings from 2-Me to C-3 and on to 5-H in **4a** confirm that the assignments of C-5 and C-10 are correct.

Finally the NH groups can be securely placed on rings A and C because they couple in 4a to C-1 and C-3 and to C-11 and C-13 and not to other carbons. In support, the chemical shifts for C-6 and C-16 (δ ca. 180) fit N=C-C whereas those for C-4 and C-14 (δ ca. 160 ppm) agree with N-C=C.

The stereochemical difference between the major and minor isomers of precorrin-6y ester which has appeared in structures **3b** and **4a,b** without justification can now be considered. That C-3 was the site of epimerisation was clear by comparing the ¹³C and ¹H chemical shifts of the two isomers. The largest differences were all from carbon and hydrogen atoms of ring-A and its attached groups. For 3-H, $\delta_{\rm H}({\rm minor}) - \delta_{\rm H}({\rm major})$ was +0.59 ppm and $\delta_{\rm C}({\rm minor}) - \delta_{\rm C}({\rm major})$ was +2.7 ppm for C-5 and -2.8 ppm for 2-Me. It is the *downfield* shift of the 2-Me signal in the major isomer relative to the minor one (loss of γ -effect) that leads to the major isomer being assigned the 3-*epi* structure **4a,b**; current work aims to provide additional evidence on this point. Partial epimerisation at C-3 has also occurred for all earlier B₁₂ intermediates which have been isolated (*e.g.* see ref. 8).

To all the independent structural evidence summarised above must be added the additional strength from the mass of data on precorrin-6x ester **2b** since precorrin-6y **3a** is derived from precorrin-6x. The stereochemistry at C-19 of **3a** is set as illustrated because **3a** is enzymically converted in high yield into hydrogenobyrinic acid **1** where the β -H at C-19 is beyond doubt. Finally, it should be stressed that though the doublebond positions are secure for the esters 3b and 4a,b, it is possible that precorrin-6y itself may be a double-bond tautomer of 3a exactly as for precorrin-6x 2a.

In conclusion, the structure **3b** has been established for the ester of another intermediate, precorrin-6y, on the pathway to hydrogenobyrinic acid **1**. This has opened the way to studies on the final steps going forward from **3a** which involve methylation at C-5 and C-15, decarboxylation of the 12-acetate group and migration of the methyl group from C-11 to C-12.

Grateful acknowledgement is made to J. Lunel, P. E. Bost and J.-C. Brunie for their interest and help, also to the SERC and to Rhône-Poulenc Rorer for financial support.

Received, 24th October 1991; Com. 1/05415E

References

- 1 D. Thibaut, L. Debussche and F. Blanche, *Proc. Natl. Acad. Sci.* USA, 1990, **87** 8795.
- 2 D. Thibaut, F. Blanche, L. Debussche, F. J. Leeper and A. R. Battersby, *Proc. Natl. Acad. Sci. USA*, 1990, **87**, 8800.
- 3 G. W. Weaver, F. J. Leeper, A. R. Battersby, F. Blanche, D. Thibaut and L. Debussche, *J. Chem. Soc.*, *Chem. Commun.*, 1991, 976.
- 4 F. Blanche, D. Thibaut, A. Famechon, L. Debussche, B. Cameron and J. Crouzet, J. Bacteriol., submitted for publication.
- 5 F. Blanche, M. Kodera, M. Couder, F. J. Leeper, D. Thibaut and A. R. Battersby, J. Chem. Soc., Chem. Commun., 1992, preceding communication.
- 6 H. C. Uzar, A. R. Battersby, T. A. Carpenter and F. J. Leeper, J. Chem. Soc., Perkin Trans. 1, 1987, 1689.
- 7 A. R. Battersby and F. J. Leeper, Chem. Rev., 1990, 90, 1261.
- 8 A. R. Battersby, E. McDonald, R. Neier and M. Thompson, J. Chem. Soc., Chem. Commun., 1979, 960.